Raycap News

Information

Protecting The BSU

The cellular network that our cellphones connect to in order to allow us to have conversations, surf the internet and download media is reliant on towers to make these activities possible. This means that the coverage areas that your network provider is discussing in their marketing materials is based upon overlap between towers, and the ability of your phone to find a signal from a tower nearby. Your signal is weak if the closest tower is far away or obstructed, and it is cut off if there is no tower within range. Complete coverage means placing enough towers in the general vicinity of users to not have gaps, no matter where they go. Each tower is responsible for a portion of that area, and if that tower was to be rendered offline, then the other towers in the vicinity would have to take up the slack. Network providers rely upon equipment placed within these towers to make the functionality of coverage happen, with the RRH (remote radio head) being placed at the tower top and the BSU (base station unit) equipment being placed either at the bottom or outside of the tower itself. The units are connected through the power cables and data transfer lines that run between them. These same lines are responsible for one of the greatest weaknesses that exists within the cellular tower. That weakness is that events resulting in damage to the equipment at the top of a tower will generally also damage equipment at the bottom. (more…)

The Science Of Surges

Cellular networks are comprised of single cell towers covering areas with their signal, overlapping into as close to complete coverage for users as possible. Every cell user has experienced the “dropped call” or the lack of bars that illustrates a weak signal. These issues cause a poor user experience, and cell phone carriers are continually fighting the battle to improve the customer experience through more robust signals and greater connectivity. This means creating not only a network of towers that will provide as close to complete coverage without gaps as possible, but additionally the redundancy of a single tower which might be rendered offline should be compensated for by the surrounding towers. These issues are common, and as a result customers will move between carriers seeking a better experience for lower prices. This is where technology outside of the common equipment used in the process comes into play. (more…)

Understanding Surge Protection Devices

The concept of surge protection is relatively simple, but the technology that ultimately creates effectiveness within the defined parameters of these devices is continually evolving. “Surge protection devices” serve a single function, to prevent electrical flow beyond a specific measured amount from moving past the device itself and impacting the circuitry, wiring or internal components of equipment that is connected downstream. The electrical flow that is being monitored is generally moving along wiring or cables of some type that connect computerized devices together, or attach them to a source of power. These devices have a threshold of electrical power that cannot be crossed without component damage, resulting in the necessity of these components to be protected from any amount of electrical flow beyond that specific amount. The effectiveness of the device tasked with this prevention is measured in a few ways, mostly being seen in the completeness of cutoff or diversion of the electrical flow, the speed with which it is stopped, and the amount of time that it takes to re-establish the “functional” status of after the instance of an electrical surge. The most effective surge protection devices are going to be the ones that not only cut off the electrical flow instantaneously, but also remain in a protective state even after this happens. Over the years, technological advancements in the makeup of the devices have improved effectiveness dramatically, resulting in the ability to utilize increasingly sophisticated and expensive equipment without the routine damage or degradation of functionality that was expected in the past. Surge protection devices are extending the useful life spans of nearly everything they protect. (more…)

The Critical Nature Of Surge Protection

For most consumers surge protection is an afterthought that is only considered as a way of protecting their home computer equipment in the event of a large scale power surge. In many cases, this is a very rare occasion that may never be noticed more than some flickering lights, but in some areas these power surges will have a degrading effect on computers if they are allowed to run continually. Some communities have power grids that will have more common surge issues that may not be enough to completely trip the breakers in a home, or cut off the power flow through a surge strip. But even these minor fluctuations in flow can have the effect of shortening the life span of circuit driven equipment. In many people’s minds, the investment into expensive surge protection devices to keep a component safe that will ultimately be replaced within only a few years does not justify the added costs. While this economic decision does make sense, the situation cannot be compared to industrial installations when considering whether to add surge protection, and in these cases it is not only necessary but it may be critical. (more…)

Surge Suppression

Surge Suppression

Electrical surges are well known to be one of the largest sources of damage to sensitive equipment like microprocessors, computers, circuits and other items that are directly connected to an electrical power source. Household surge protectors are devices used as power strips that work as a method of plugging several household items into a single device but will also trigger a circuit break if there is a power surge, thus protecting any equipment attached from potential loss.  Less people are aware of industrial surge suppression systems and devices like those manufactured and produced by Raycap, one of the world’s leading electrical protection companies. Raycap’s business is to manufacture individual components and complete systems that provide protection from electrical surges and overvoltage on an industrial level, working to prevent damage to mission critical equipment worth millions of dollars. Needless to say, simple household surge suppressors are not the type of protection we are discussing.

Raycap manufactures several product lines designed to provide industrial level electricity protection from a variety of causes and sources. While their Strikesorb and Rayvoss lines are not the only protection devices that are utilized within industrial system installations, they are an extremely effective solution for protection devices put into place at the front line conductor entry point locations, protecting both the equipment and the panel boards feeding the equipment.  These devices are specifically designed to eliminate electrical power surges from coming into the facility.  Both the device and the correct installation point are crucial for leveraging maximum efficiency and protection against the wide variety of electrical spikes.  Raycap products have been designed and tested against different surge currents and have proven time and time again to be among the finest on the market.

The different causes of electrical transients require different levels or tiers of surge suppression devices in order to effectively prevent the surge from reaching equipment inside an industrial site.  For optimum protection the National Electrical Code recommends a tiered approach of surge protection, placing the high capacity surge suppression devices at service entrances followed by surge suppressors installed at branch panels and downstream. Residual voltage which is the amount of transient voltage that will remain on an AC line after a surge suppressor has functioned can still be extreme enough to cause significant damage downstream. A second and even third level of surge protection is needed in order to provide clean voltage to sensitive equipment.

When lightning strikes many times it is multi-stroke in nature, meaning that a single flash will contain four or even more strokes.  Lightning strikes to power lines that are directly connected to equipment will produce surges of massive levels which can not only destroy circuitry but additionally cause fires within industrial facilities and compound the levels of damage.  Even lighting strikes to buildings and structures can couple into power lines which are attached to equipment and must have protection systems designed specifically for coupled strikes in place. While a direct strike to equipment is almost assured to cause damage beyond the level of repair, a tiered diversion system consisting of first overhead shields and lightning rods, then high capacity line side and load side surge protection to all conductor entry points, critical panels, and downstream equipment is the best possible plan to protect an entire industrial facility.

Raycap systems for surge suppression will assist your facility in remaining as unaffected by power surges and overvoltage events as possible.  Contact us today to find out more.

Overvoltage Protection

Overvoltage Protection

Raycap is a leading designer and manufacturer of electrical overvoltage protection devices and systems for use within industrial sites. The protection systems developed by Raycap use industrial-grade components, such as the Strikesorb SPD technology, which enable unmatched levels of protection of critical, sensitive equipment within the industrial site. This vulnerable equipment, such as computers, microprocessors, and other devices powered through the electrical grid, would be damaged by lightning strikes and other overvoltage events that produce power surges from the electrical grid or inside the industrial facility. The protection technology inside Raycap’s products prevents damage from varying overvoltage and surge causes, and it is designed to prevent any electrical surges from coming into contact with equipment. (more…)

Electrical Protection

Electrical Protection

 

Raycap is one of the world’s leading manufacturers of electrical protection devices. Its electrical protection systems are designed to provide the finest protection available for industrial equipment and sites.  Electrical protection comes in numerous forms to divert the damage from specific electrical events, and the combination of these mechanisms into systems is the best way to provide complete protection from electrical surges. (more…)

Protection From Lightning On Industrial Sites

Protection From Lightning On Industrial Sites

The protection of industrial sites from lightning strikes and the surge damage that occurs as a result is important in order for companies to reduce the amount of losses absorbed over time.  There are two types of degradation losses as a result of surge instances that occur and effect sensitive equipment and data, causing gradual degradation due to surges at shutoff and startup, and instant damage and loss as a result of large power surges, generally as a result of lightning strikes.  The ongoing damage to equipment as a result of the switching surges is mitigated through the use of specific protection equipment, and the protection from lightning is achieved by using several methods and types of equipment designed specifically for the purpose.  Lightning losses are as a result of damage to computer components and programmable logic controls or microprocessors from the physical or the data loss standpoint.  Raycap is a leading manufacturer of systems designed to mitigate lightning losses of both kinds. (more…)

TVSS For Electrical Protection

TVSS For Electrical Protection

The term TVSS has been in use for years, being a shortened version of “transient voltage surge suppressor.” Raycap is one of the world’s leading manufacturers of TVSS devices, or Surge Protective Devices (SPDs), used throughout industrial sites to protect sensitive equipment from power surge damage and data loss.  Electrical surges on AC power lines can be caused by several different events, all with varying degrees of damage as a result.  In the case of lightning surges where spikes of over 50,000V routinely happen, Strikesorb TVSS equipment installed before and after the point of strike has the ability to minimize loss from the lightning surge.  TVSS equipment also mitigates the damage from minor spikes or surges or “electrical transients” caused by the switching on and off of equipment.   (more…)

What Is TVSS?

What Is TVSS?

TVSS is the industry term for a “transient voltage surge suppressor”. This term is still in use however it has been officially replaced by Underwriter’s Laboratories with the term “Surge Protective Device” or (SPD).  TVSS are devices that act as a cutoff in the case of a momentary spike or surge of electrical power on an AC line.  The installation of TVSS (SPDs) is crucial to the protection of sensitive equipment that can be damaged by electrical surges on AC lines; and of the data that might be destroyed if such spikes  happen.  TVSS devices (SPDs) are the most popular type of surge suppression equipment in use today. (more…)