Windfarms And Surge Protection

While the debate over alternative energy rages on, with opponents to wind, solar and hydroelectric power production generally basing their argument on cost, new developments in the surge protection field may help end the discussion.  Alternative energy power production utilizes free fuel sources in order to produce electricity for public consumption, while traditional power production utilizes the burning of fossil fuels to achieve the same product.  While there is no debate that fossil fuel-based production of electricity has environmental impact that is greater than any impact created by green energy technologies, the debate continues based essentially on cost.  Most voters are willing to weigh the environmental impact of a production method against the costs that they will bear to have access to the product, and most will lean toward and support the cheapest method of production.  As technology produces more efficient methods of power production, the pendulum begins to swing in favor of alternative sources.

Windfarms produce electricity through the blades of windmills being turned by the blowing wind. This motion produces electricity and is transferred through components that are attached directly to the wind turbine tower via the electrical grid. The towers themselves need to be able to receive an unobstructed flow of wind across their blades in order to function properly, creating a risk of lightning strike by their very placement and physical makeup.  Being the tallest structure in an area without competing tall structures puts turbines at risk.  As the tallest structures in the area, turbines are always at risk of lightning strikes to the tower or blades, and it is expected that they will sustain a certain amount of damage as a result of a direct strike. However, the damage that is produced as a result of the surge of electricity that travels through the connected power lines toward the components used in the process can also be substantial. The control and production equipment is quite expensive, and damage to this equipment as a result of surges can range from simple destruction of equipment circuitry to fire and explosions. The damage is so commonplace that there have been instances of wind-power producers going out of business due to an inability to acquire adequate insurance.

The damage to the components as a result of lightning surges can be prevented and potentially even eliminated completely through the installation of industrial level surge protection devices at strategic points in the equipment chain. By breaking the flow of electricity across the lines and diverting the excess flow to ground when a surge takes place, the equipment downstream is protected and able to continue to function.  Prevention of this damage, which was built into the business plans of wind-power producers in the past as higher prices charged for power produced, enables wind farm operators to potentially drive prices down below fossil fuel production.  When the two methods of production reach equal costs, there is no reason to continue to debate the issue.  The public will generally support the cheapest method of production, and if that method is also the cleanest then the public benefits in two ways.