AngaCom June 7-9, 2016

ANGA_COM_webRaycap will exhibit at AngaCom June 7-9th 2016 in Cologne, Germany. The AngaCom Exhibition and Congress is one of Europe’s leading events for Broadband, Cable & Satellite operators and content providers supporting the telecommunications industry.


Raycap at AWEA Show May 23-26, 2016

AWEA_Logo_rdax_95Raycap will exhibit in booth 1848 at the AWEA Wind show in New Orleans, Louisiana USA, May 23-26th 2016. The AWEA supports the Wind Power industry in North America, and professionals from all over the world will be in attendance.


Surge Protection Systems For Green Energy Technology

Cost reductions through the effective extension of expected lifespans, as well as reduction of downtime due to maintenance and repair expectations, are the most effective method of closing the gap between “green” energy production and fossil fuel energy production. At the core of all progress through technology is the combination presentation of the platform to the public for scrutiny. Consumers will allocate a certain amount of acceptance and tolerance of situations that are less comfortable than others if there is a greater benefit to themselves or society as a whole, but the general consensus of the masses will be to vote with their wallets.


Cost Reductions Solar Power The Best Choice

The exploration of “green energy” alternatives to fossil fuels has been at the center of debate for many years, and although there are few outside of fossil fuel insiders who would argue that solar power is not one of the best environmental choices, the real decisions are generally made based on economics. While the attitudes of residents of developed nations may not all be in agreement regarding the necessity to reduce fossil fuel energy production on order to slow the effect of greenhouse gasses on the environment, there is rarely an argument put forth in support of the more expensive of two choices if that choice is also the more environmentally friendly. What this translates to is that the real choice between fossil fuels and solar power production of energy falls squarely on the costs of production. There are some who are willing to pay more for energy if it has less of an environmental impact, but the general choices of the population will gravitate towards the cheapest power available.


Wind Turbine Surge Protection

Strikesorb is the premier offering from Raycap for surge and lightning protection for wind power systems. To accommodate the need for green energy and next generation power technology, more wind farms continue to be built and current wind farms are being expanded. As this trend continues, both turbine manufacturers and wind farm owners/operators are becoming increasingly aware of the costs associated with damage to these systems from the environment. The costs that occurs when a turbine sustains a lightning strike comes in two forms: the monetary costs associated with replacement of machinery caused by physical damage and the costs associated with the system going offline and becoming incapable of producing power. Electrical systems inside of wind turbines are at risk and face continual challenges based on the open landscapes that often surround them because they are generally the tallest structures in an often times exposed area.


The Case For Surge Protection Systems For Wind Turbines

The continual change in climate conditions combined with the increasing dependence upon fossil fuels has provided a great in interest in sustainable, renewable energy resources worldwide. One of the most promising technologies in green energy is wind power, which except for high startup costs would be the choice of many nations worldwide. For example, in Portugal, the wind power production goal from 2006 to 2010 was to increase to 25% the total energy production of wind power, a goal which was achieved and even surpassed in later years. While aggressive government programs pushing wind and solar energy production have expanded wind industry substantially, with this increase in the number of wind turbines comes an increase in the likelihood of turbines being struck by lightning. Direct strikes to wind turbines have become recognized as a serious problem, and there are unique issues that make lightning protection more challenging in wind energy than in other industries.


Raycap Granted Gold Recognition Level EcoVadis Rating for Social Responsibility

EcoVadis logoMarch 2016 – Based on their EcoVadis Corporate Social Responsibility (CSR) rating, Raycap has been granted a Gold Recognition level. Corporate Social Responsibility is the continuing commitment to behave responsibly by integrating social and environmental concerns into business operations. CSR goes beyond regulatory compliance to focus on how companies manage their economic, social, and environmental impacts, as well as their relationships with stakeholders (e.g. employees, suppliers, government).

EcoVadis is an organization which assesses the policies and measures in place and the reporting published by companies with regard to environmental, labor practices & human rights, fair business practices and sustainable procurement issues.


The Necessity Of Surge Protection For Wind Turbines

Strikesorb is the premier offering from Raycap for surge and lightning protection for wind power systems.  To accommodate the need for green energy and next generation power technology, more wind farms continue to be built and current wind farms are being expanded. As this trend continues, both turbine manufacturers and wind farm owners/operators are becoming increasingly aware of the costs associated with damage to these systems from the environment.  The costs that occurs when a turbine sustains a lightning strike comes in two forms: the monetary costs associated with replacement of machinery caused by physical damage and the costs associated with the system going offline and becoming incapable of producing power. 


Wind Energy Hamburg 2016

wind-turbine-protectionYou can find Raycap at the Wind Energy Hamburg event in Hamburg Germany September 27 – 30th at Hall B6, Stand 223. The event is the international trade fair for the wind industry, providing an opportunity for all businesses along the entire value chain of the international wind industry, onshore and offshore to meet and learn. The fair will be held at the Hamburg Messe exhibition center.


Promotion of Green Energy Through Cost Reduction

Both solar power and wind power are internationally recognized as crucial components to the future of life in nearly every industrialized society on Earth.  The fossil fuel industry still dominates most cultures, with energy produced from the burning of coal, oil, wood or other elements used to produce heat and electricity, power our automobiles and cook our meals.  However it is widely recognized that there are multiple alternative methods of producing that electricity and energy including wind and solar power.


Wind Turbine Surge Protection

Raycap has a full suite of surge protection products available for wind turbine applications. From Strikesorb ,the premier offering from Raycap to various DIN rail mounted protection products and surge and lightning monitoring.  As we enter a time in history when the push towards green energy and technology is continually causing more wind farms to be built, and current wind farms to be expanded, both turbine manufacturers and wind farm owners/operators are increasingly aware of the costs associated with lightning strikes.  The monetary damage that operators sustain when there is an instance of a lightning strike comes in two forms, the costs associated with replacement of machinery due to physical damage and the costs associated with the system being offline and not producing power. 


Solar Power Surge Protection Devices

Solar power production is an industry that has been in the spotlight in the American media landscape for several years as the push towards “green” energy production gains popularity.  Generally discussed in the same vain as wind power production, these two sources of renewable energy are favored by most environmentalists due to their negligible impacts on the environment. When compared to fossil fuel energy production, both solar and wind power are far and away the more preferable choice due to their low environmental impact and elimination of greenhouse gasses produced through the burning of fossil fuels. Greenhouse gasses and known and most widely recognized as having serious impacts on our worldwide climate, and the harvesting of the fossil fuel itself has also had serious detrimental effects on our landscapes and living conditions in production areas. With the advent of wind and solar power as viable alternatives that have the promise to fulfill demands, the discussion of complete elimination of fossil fuels as a power source, and the moving to greener production methods, becomes a very relevant one.  The hindrance at this point in time are the production costs which directly dictate the price of the energy that is paid by businesses and consumers. While there is generally no argument against wind and solar power as a method of producing power, the push back comes in the form of the prices that must be paid. 


Solar Power Surge Protection

Photovoltaic (PV) systems are at risk for significant ongoing damage and revenue losses to power plant operators as a result of damaging electrical storms.  Factors ranging from their remote locations and extensive layouts, to direct or indirect lightning strikes affecting system components, can all create revenue losses experienced as interruptions in power generation and equipment replacement costs.  Significant losses are sustained if a PV system is offline for even a few hours, let alone days or weeks.  The only way to mitigate damages caused by lighting surges is by avoiding the potential effects of surges with surge protective devices (SPDs) installed at inverter locations, inside combiner boxes, as well as at various other points within the PV power facility.


Solar Surge Protection

Solar farms using photovoltaic (PV) systems to produce clean energy for consumer or industrial use are subject to serious potential damage due to their specific physical makeup.  The necessity to cover wide expanses of land without having direct sunlight compromised by surrounding structures makes solar installations vulnerable to lightning strikes.  Combine this threat with the physical wear and tear of exposed open spaces caused by wind, rain and other natural events, and there exists a situation where replacement costs must be figured into ongoing operations.  It must be assumed that components of the system will be significantly damaged over time and need repair and replacement.  While there is little that technology can do to stop wind and rain damage, surges as a result of electrical storms can be prevented effectively with intelligent choices of  surge protective devices (SPDs).  All SPDs are not created equal, and offer different levels of solar power surge protection.


Photovoltaic Surge Protection

Photovoltaic surge protection systems are some of the most effective methods of increasing profitability of solar power plant installations. Operators of PV power systems understand the significant costs associated with equipment replacement or loss, and are also well aware of the risks of damage due to remote locations and extensive layouts. While inclement weather and natural environmental factors pose significant risks to solar installations, perhaps the most critical risk factor is lightning strikes to facility components. Lightning strikes create damage in the forms of both equipment destruction as well as revenue losses associated with systems being knocked offline for extended periods of time. The only effective means of protection is avoidance of the surge itself through installation of SPDs (surge protective devices) within inverter locations, string boxes as well as various other strategic points within the solar facility boundaries.


Do You Operate A Wind Farm?

Over the course of the last five years or so, the nationwide interest in clean energy production has sparked additional demand for larger industrial installations of clean production facilities. The growing demand has produced the need for both larger facilities but also safer and more productive systems. The main issue facing these types of installations is the production of energy at a price which can match fossil fuels. The affordability of energy produced through “less clean” means has historically lead to the stagnation in advancements within the clean energy sectors, simply due to the lack of funding to develop the technologies. As we come closer and closer to prices which are equal, we find that technological exploration into improvements can propel clean energy production to a place which is unmatched as far as affordability.


Wind Turbine Protection From Electrical Surges

Electrical surges are one of the greatest threats to wind turbines, and the operation of the systems attached to them. While damages to wind turbines as a result of the harsh natural climates they are exposed to is expected, the damage caused through lightning strikes stands out as especially significant. Due to their natural attraction of lightning by their physical makeups of being taller than surrounding structures and generally placed in remote areas, wind turbines themselves must have an assumed maintenance or replacement plan figured. This type of plan cannot accurately predict lightning damage due to the inconsistent nature of it, as well as the multiple forms of damage that can occur. A direct lightning strike to a wind turbine will undoubtedly produce structural damage to the location of the strike, and there is little that can be done as far as protective measures that will extend equipment lifespans from this type of damage. The coupling of added volumes of electricity into power lines which are directly attached to circuit driven equipment, however, does have an ability to have damage minimized or avoided. Through installation of Raycap Strikesorb SPDs at strategic locations within the wind turbine structure, the inevitable surge can be effectively prevented from reaching it’s destination.


Electrical Protection

Electrical protection is the common phrase to describe the protection of electronic components from the damages that occur as a result of electrical surges.  This problem is quite common due to the fact that electrical flow across power lines is not fixed at a specific capacity, and instead has the ability to surge to unspecified levels, the maximum capacity being only capped by the amount that the supply lines themselves are designed to transfer.  Fluctuations in the power levels being transferred across supply lines are known as “transients,” and have the ability to damage or destroy equipment instantaneously.  This represents the primary reasoning behind the installation of electrical protective devices in between supply lines and sensitive equipment in so many applications.


Industrial Surge Protection Systems

Industrial surge protection systems protect wind farms, cell sites and other industrial installations that rely on continuous uptime to remain profitable. In cellular installations, customer connectivity to communications and data networks is facilitated by the ongoing operations of computerized equipment at cell towers in the field. Each cellular tower or rooftop cell site is a component of a communications grid which allows customers to remain connected while they are within range of that particular tower. The structure itself is a target for lightning strikes due to its physical makeup. The tower is designed to be taller than surrounding structures to provide unobstructed signals to be sent and received via the sites remote radio heads (RRHs) installed on tower or rooftops. The RRH is a sophisticated piece of radio equipment located at the top of the tower structure, and directly connected to the base station unit through fiber-optic cable and copper power cables; or by a hybrid combination cable consisting of both. Any lightning strike to the RRH or to the structure itself will generally create a surge that travels directly down parallel lines or is coupled into lines, easily moving from one component to the next through the metal structure to the power cables. These electrical transients must be prevented from making this journey in order to minimize the damage from lightning surges. In addition to physical damage, the downtime from being knocked offline due to electrical surges creates unhappy customers who are unable to connect to the network.


DC Surge Protection Industries

Two industries which see some of the largest benefits from DC surge protection are solar and telecommunications.  Although any industrial application which utilizes DC power current setups will be benefited by the installation of SPDs to protect the levels of current running to sensitive equipment at all times, there are several unique characteristics to these industries that make them especially susceptible to lightning strikes which is one of the leading causes of damage and as a result replacement costs to the business.  Raycap is a leading producer of DC surge protection products and systems, and offers numerous configurations of its Strikesorb surge protection line, which provides the optimum level of DC power protection from electrical surges produced by lightning strikes.


DC surge protection

DC surge protection is necessary in several industries which utilize DC current in order to maintain service functionality.  Two major industrial applications of DC surge protection devices is in the telecommunications industry utilizing cell tower structures and in the solar industry utilizing photovoltaic power plants.  Although the solar industry is more variable in its utilization of both AC and DC currents, the primary use of DC is wider spread.  While there are numerous products on the market which provide a minimal level of surge protection for these types of installations, the Strikesorb line of SPDs (surge protective devices) are an excellent selection due to their superior mechanical construction and benefits.


Electrical protection

is the common phrase to describe the protection of electronic components from the damages that occur as a result of electrical surges.  This problem is quite common due to the fact that electrical flow across power lines is not fixed at a specific capacity, and instead has the ability to surge to unspecified levels, the maximum capacity being only capped by the amount that the supply lines themselves are designed to transfer.  Fluctuations in the power levels being transferred across supply lines are known as temporary overvoltages (TOVs) or transients and have the ability to damage or destroy equipment instantaneously.  This represents the primary reasoning behind the installation of electrical protective devices in between supply lines and prior to sensitive equipment in so many applications.


Industrial Surge Protection

Industrial Surge Protection is one of the single most important elements that needs consideration on every industrial application involving sensitive equipment, computers or data processing.  In the modern age, there is a significant amount of automation of nearly all operations on an industrial scale, assuring the ability to stay online during specified times, oftentimes 24 hours a day.  The majority of industrial applications have various characteristics in common across nearly every industry, generally utilizing a large amount of electricity.  The supply lines to the installation will have capacities far beyond those serving residences, and the probability of transients coming across those lines from the grid or lightning strikes is quite high.  The sheer expense of the machinery that is connected to these lines is reason alone for installation of surge protection devices, but when factoring in the potential for human life loss or outages, the choice to deploy electrical surge protection becomes clear.


Industrial Surge Protection Components

Industrial surge protection has become an industry that is necessary in order to create extend equipment life and conserve capital.  All businesses face similar challenges related to cash flow, and no industry is immune to the pressures that are associated with costs of doing business vs income.  As a result of these pressures, of the business of risk management has become huge business of  validating methods to keeping costs down while providing service to customers. These analysis  generally involve extending the lifespan of industrial equipment in any way possible.  The expected replacement schedules of industrial equipment take into consideration wear from regular use, as well as a certain amount of expected natural occurrences which result in the need for replacement or repair.  It is here that industrial surge protection systems can be so beneficial to companies.


The Protection Of Wind Turbines From Electrical Surges

The protection of wind turbines from electrical surges produced by lightning strikes has become more and more crucial as the move toward wind-generated power grows in popularity.  Over the course of the last five years, the increasing interest in “green” energy from both an economic and sustainability aspect has created the need for ever increasing production of new energy sources like wind turbines, solar panels and other alternative energy technology.  The majority of “clean” power production shares a common element, the installation of mechanical elements and electronic components in remote areas that are subject to the harshest of weather conditions, including lightning strikes.  The damage that results from a lightning strike either directly to a wind turbine or coupled into power lines from a strike to a nearby structure is significant, and can range from catastrophic failures that need complete equipment  replacements to offline outages that require expensive maintenance and resetting to restore functionality.  While a direct lightning strike to turbine blades or the wind turbine structure itself will invariably produce mechanical damage, the surges that come from these strikes can be prevented from reaching the sensitive equipment of the installation, as long as the electrical protection systems are robust enough to prevent surges of this magnitude.  There are millions of lightning strikes every day across the globe, and the prevention of surge related damage to the systems that produce clean energy will help reduce costs and ultimately create a situation where wind-generated power will match fossil fuel power.


Surge Protective Device

There are many different types of industrial applications which utilize sensitive equipment in order to provide functionality, all of which should be outfitted with a surge protective device. In most cases this will be presented in the form of computerized machinery and data processing equipment or lines which will either provide accesses to networks or continually monitor/manipulate situations within the network in order to maintain ongoing operations. Advancements over the years have allowed for larger transfers of data with faster speeds and over larger distances, as well as tighter control over the machinery in play at any point, but with this advanced technology comes greater expense and risk with regards to electrical transients. All of these pieces of technology require certain levels of power to be supplied, and all have a tolerance threshold which cannot be breached safely. One of the most damaging and destructive phenomenon that can happen is the lightning created electrical surge, and without adequate protection against this phenomenon, a company can lose millions of dollars in an instant. The circuitry within modern computers and data processors are only able to withstand a minor fluctuation in current before damage or degradation happens, lightning strikes to the supply lines or the facilities themselves creating surges that are far out of this safety zone. The only effective method of damage prevention is suppression of the surge completely and totally, this being accomplished through the installation of surge protective devices which monitor electrical flow and instantaneously cut it off if necessary.


Wind turbine surge protection

Wind turbine surge protection is an absolute must if operators are to prevent the eventual failures of equipment and damage to components caused by lightning strikes.  Wind farms are generally positioned in remote locations, subject to harsh weather conditions including lightning strike related damage. If lightning strikes even near a wind farm the likelihood of residual surge damage is significantly increased if the wind turbine is left unprotected.  In fact, the majority of damage caused by lightning is as a result of indirect strikes to turbines having inadequate protection, or a combination of insufficient grounding or transient surge protection.  Lightning strikes will most times be associated with blades, however there is also significant risk of damage as a result of over-current and over-voltage transients which are brought about through both direct and indirect strikes.   There are roughly 1,700 active electrical storms at any time of day throughout the world, producing over 100 lightning flashes per second.  This means that there are upwards of 8 million lightning strikes every day, and cloud to ground strikes make up about 10% of this number.  The odds of a wind turbine being struck by lightning are high, and the resulting damages are not limited to component failure.  In addition to the obvious direct strike damage, there is also significant risk to people and structures in the form of step and touch potentials, side flashes and secondary events such as smoke inhalation, potential falling objects and water ingresses.


Surge Protection For Wind Turbines

Surge protection for wind turbines is a crucial addition necessary for wind farm operators to protect their investments, keep operations running and reduce ongoing expenses caused by electrical surges caused by lightning strikes.  Wind power is a key to the new energy development movement with the potential of helping countries reduce their reliance on fossil fuels. Countries and companies all over the world are beginning to fully realize the benefits of clean energy production, and as the explosion of interest in wind generated power increases, so does the need for effective protection of these structures and the systems that comprise them.  Wind turbines are generally the tallest structures in an area and often are located on high ground. As such they are often subjected to the harshest weather conditions including the thousands of electrical storms present on any given day across the globe.  These storms produce nearly 8 million lightning strikes per day.


Industrial Surge Protection

Industrial Surge Protection is the term that is used to describe the securing of data equipment, processors or other machinery from damage as a result of electrical surges. While the most severe kind of surge which will effect industrial applications is as a result of lightning, there are also surges which are produced by numerous other kinds of failures or errors. No matter what the source of an electrical transient, the only way to prevent damage to equipment is to prevent it from ever reaching the end point. In order to do this specialized industrial surge protectin equipment must be installed in between the source of the electrical surge and the equipment itself. The installation points are generally at junctures, electrical boxes and line joins. The power lines themselves are designed to allow for the most unrestricted flow of electricity possible, so the installation of these diversionary or breaker types of devices becomes crucial in order to prevent the flow when necessary.


Electrical Protection

Electrical Protection is crucial to the ongoing preservation of the sensitive components inside of computers and most high tech equipment that requires electricity through the power grid. Electrical protection devices will generally fall into two categories, those designed for consumer use within the home and those designed for industrial use to protect today’s complex and sensitive electronic equipment worth millions of dollars. Naturally, the levels of protection necessary for these two classes of equipment are vastly different. Raycap specializes in the manufacture and sale of electrical protection equipment that is designed for industrial use.


Industrial Lightning Protection

Industrial Lightning Protection is an industry that was born out of necessity. As advancements in sensitive electronic components capable of being damaged by even slight fluctuations in electrical current have grown, the necessity to protect that equipment from electrical surges has become more crucial. Because of the expense and more mission critical nature of electronic equipment being installed in industrial applications, advances in electrical protection became necessary.


Hannover Messe 2016

Find Raycap in Hall 13, Stand F90 at the Hannover Messe 2016 in Hannover Germany, the world’s largest trade fair for industrial technology, April 25-29th, 2016. The event presents visitors with a wide range of themes and exhibits including R&D, industrial automation and IT, industrial supply, production engineering and services, as well as energy and environmental technology. Raycap will showcase its solutions for the electrical protection of new energy systems and industrial systems, featuring its patented Strikesorb surge protection modules.


RF Protection

RF Protection

RF Protection is an industry term to describe protective devices that are installed in order to shield radio frequencies, and are typically involved in modern base station transceiver equipment. In most cases the application involves protection RF and Coaxial data lines, which can be severely impacted by lightning strikes and the associated transient that follows. The area of concentration with regards to RF protection at Raycap involves the design of protective devices which can influence the experience of uninterrupted service within enclosed areas. Raycap designs and manufactures products which protect against the surges and spikes which can produce data failures and outages through the destruction of communication boards. Ongoing, unfettered communication within specific areas of service is our goal.


TVSS or SPD

TVSS or SPD

TVSS is an older term in the electrical surge suppression industry, which is still used by some but is more frequently referred to today as SPD, or “Surge Protective Device.” The term TVSS stands for “transient voltage surge suppressor” and was officially replaced by Underwriter’s Laboratories in the recent past. TVSS devices, which will be referred to as SPDs for the remainder of this article, are interrupters which act as a cutoff of electrical spikes and temporary surges on AC power lines. SPD installation is not only suggested but is crucial for sensitive equipment which would sustain damage if such a surge was to happen on a connected AC power line. SPDs make up the most popular and most widely used of all surge suppression equipment today.


Lightning Protection For Cell Sites

Mobile network providers face higher equipment costs as the demands for expanded coverage areas and network speeds increase.  Customers are not only demanding faster networks, better connectivity and uptime from their network providers; they are also faster data rates and lower costs.  All of these increased capacities translate to higher expenses for operators, who must find ways to mitigate the costs by extending equipment lifetimes and eliminating risks associated with damage to the equipment on their cell towers and cell sites.  Raycap is a specialized company that engineers, produces and distributes technology that provides lightning protection and connectivity solutions for cell sites.


Protection Of Industrial Sites From Lightning

The protection of industrial sites from lightning is a necessary endeavor.  The equipment used for lightning protection at a typical industrial site is varied and available in different configurations depending upon the need at the site. The equipment to protect industrial sites from lightning and other electrical overvoltages in order to minimize downtime and avoid industrial equipment replacement costs.  Although the expensive and sensitive equipment that drives operations at factories and other industrial installations has an expected lifespan, the business plan will generally figure in an additional cost for replacement of components due to accidents and “less standard” occurrences such as lightning strike or other electrical damage, or theft.  One way to increase revenues retained by the business is to leverage equipment in order to minimize replacement costs and maximize the useful lifespan of equipment necessary for continuing operations.  The installation of lightning protection technology and systems from Raycap is an excellent way to leverage such assets.


Cell Site Surge Protection

Cell site surge protection is becoming increasingly important due to higher volumes of cellular traffic, 3G, 4G and LTE, and the expansion of the transmission capacities needed. Optimal equipment functionality is necessary in order to keep next generation network infrastructures up and running at all times, and must be protected from devastating natural events such as lightning.  As mobile network operators have improved levels of service to their clients through new and improved architectures, such as distributed base station architectures, featuring remote radio head (RRH) technology and the higher capacity base station units that accompany them the need to protect exposed electronics at the tops of the towers has become evident.  The ultimate goal of any mobile operator is improved network reliability and availability, and Raycap is the partner of choice for the world’s largest mobile operators.  Raycap’s superior cell site surge protection technology is powered by Strikesorb, a technology designed specifically to provide the most extensive protection to mission critical infrastructure.


Cost Reductions Through Overvoltage Protection

All businesses are concerned about the bottom line and in exploring the potential advancements that can improve cost savings and increase profitability over time. The obvious desire to increase the top line sales may be the most visible business benefit, but there are significant improvements to be made to business operations by watching savings more carefully. This includes the extension of equipment lifespans and the reduction of equipment replacement costs.  Technological advancements which will improve equipment lifespan can be found everywhere in the advanced manufacturing technologies of today. But those that utilize circuit driven machinery within industrial applications and sites have an advantage they may be overlooking.  This advantage is the technology offered by Raycap products to provide capital (CapEx) and operational expenditure (OpEx) reductions through effective lightning surge and overvoltage protection.


Overvoltage Protection Systems For Cost Reduction

Most processor-based equipment, or that involving circuitry which can be easily damaged by electrical transients, will either build in or suggest some basic level of overvoltage protection.  Electrical “transients” are brief fluctuations in the stable electrical current that flows to a device in order to keep it powered, and many are unaware that there are not only many transients which will happen throughout the course of a day, but also that there are numerous causes for electrical transients which will produce extremely wide ranges in the variation of current, from small and temporary increases to large-scale surges which can produce extreme levels of damage.  The basic premise is to keep a consistent level of power flow at all times, while expecting and preparing for the surges which could produce damaging effects.


Remote Radio Head Surge Protection

Industrial surge protection for cell towers and cellular installations has special considerations due to the expenses involved with regards to the sensitive equipment necessary as well as the attraction for lightning strikes themselves which are posed by the towers.  Due to the necessary positioning of the towers in order to provide quality service as well as the materials that the towers and structures themselves are constructed from, cellular installations are direct targets for lightning strikes and must be appropriately protected as far as surges and electrical transients.  Raycap is one of the world’s leading manufacturer of surge protection equipment specialized for this purpose, and provides it’s Strikesorb technology as the best option for cellular providers.


RRH Surge Protection Systems From Raycap

Those familiar with the industrial surge protection industry understand the importance of the Strikesorb technology developed by Raycap for the protection of mission-critical distributed base station architectures. A cell tower is a prime target for lightning strikes simply due to the combination of height and metal in the construction, along with their often being positioned within areas that do not feature equally tall structures.  In essence, the necessary components needed to provide adequate cellular service signals also attract lightning, and the probability of a strike on or near a tower is quite good. Even if critical signaling components on top of towers or rooftops “already have built-in protection” smart operators know that it is crucial to install Raycap’s industrial strength DC surge protection systems to guard against the intense and often repetitive electrical surges that come with a lightning strike. Raycap connectivity and protection solutions for RRH networks protect the sensitive equipment within the cell site which would almost certainly be damaged by a lightning surge.  The Strikesorb technology developed by Raycap is deployed by many cellular network operators worldwide, and is recognized as the finest remote radio head (RRH) surge protection solution on the market.


RRH Surge Protection

 

Raycap is one of the world’s leading manufacturers of remote radio head (RRH) surge protection devices, specifically designed to protect the RRHs and BBU (base band unit) in a distributed base station architecture from lightning strikes, which can damage or completely destroy this sensitive equipment.  The main reason that industrial surge protection equipment is so crucial in these cellular architectures is the conductive path between the units.  In a distributed base station architecture (DBS), the connectivity between the BBU and the RRH is provided through copper cables fed from the base station up the tower or building structure to the RRHs mounted on a roof or tower top.  The power to the RRH is supplied through these copper power cables, or by hybrid copper/fiber combination cable, creating a perfect path for electricity to travel on the structure and damaging the equipment.  These surges, if left unmitigated, will most certainly destroy sensitive electrical equipment attached within the chain.  Raycap’s Strikesorb technology is utilized worldwide to protect RRH and connected equipment from these surges.


Surge Suppressors

Protection of the sensitive equipment involved in the routine operations of industrial sites is paramount in order to avoid costly repairs, replacement delays and crucial data loss.  The fragile circuitry that functions within that equipment not only keeps the larger machinery online and functioning correctly, but also prevents even greater losses due to potential damage to less sensitive equipment through malfunction.  In essence, the computers, microprocessors and circuit-driven devices are the heart of the industrial site, and they must be protected against damage of any kind in order to ensure smooth operations.  Aside from the obvious potentials of theft and natural disasters, electrical overvoltage and power surges are the largest threat to the operations of most industrial sites, and unfortunately this fact is not understood by all owners and managers until it is too late and an accident has occurred.  Raycap is in the business of preventing accidents through surge suppression protection, and protection of your installation against these threats is our number one priority.


Electrical Protection For Industrial Sites

Industrial sites and factories that house industrial control equipment are often the unfortunate recipients of electrical overvoltage events caused by power surges and equipment switching errors.  As well, industrial sites are often in danger of being struck by lightning.  In addition to the obvious issues that come with a lightning strike, the volume of consumed electricity that is necessary to keep most industrial applications online makes them especially susceptible to electricity-related damage.  In order to minimize the damage to equipment caused by electrical surges, it is crucial to create a redundant electrical protection system for industrial sites.


Surge Suppressors For Electrical Protection

Surge suppression devices are the single best method of protecting equipment from electrical surges and overvoltage events.  Anyone with a computer or television understands the damaging effects of power surges on any equipment which contains circuitry, as a power surge to the home has the ability to easily knock equipment offline and destroy internal components that are only able to handle a limited amount of electrical current.  The exact same premise applies to industrial applications and sites, the only real difference is that the stakes are exponentially higher with far greater potentials for both damage and losses in industrial environments.  An electrical surge to a private residence can cause thousands of dollars in lost data and equipment failure, and an electrical surge to an industrial site can cause millions, let alone the risk of fire and other dangers.  The number one rule with regard to electrical surges is to avoid them if possible, and suppress them if necessary.  Raycap is a world leading manufacturer of surge suppression devices and systems designed to protect industrial sites from electrical surges and overvoltage.


Overvoltage Protection Systems From Raycap

Raycap holds the distinction of being recognized as a world leader in the production and manufacture of overvoltage protection components and systems, designed for industrial applications.  The patented Strikesorb SPD technology allows for previously unmatched levels of protection from electrical damage to sensitive equipment like microprocessors and computers.  Overvoltage events can cripple any equipment connected directly to an electrical grid without interruption equipment installed, being produced through a variety of accidents which can cause surges.  These surges are immediate increases in the levels of electricity flowing from the source to the components, and are generally the result of lightning, switching errors, operator error or malfunction.  Raycap’s Strikesorb line of products acts as a barrier between equipment and electrical overvoltage levels, in order to instantly divert electrical current away from potentially damaged components if the critical level is exceeded.


Surge Suppression

Surge Suppression

Electrical surges are well known to be one of the largest sources of damage to sensitive equipment like microprocessors, computers, circuits and other items that are directly connected to an electrical power source. Household surge protectors are devices used as power strips that work as a method of plugging several household items into a single device but will also trigger a circuit break if there is a power surge, thus protecting any equipment attached from potential loss.  Less people are aware of industrial surge suppression systems and devices like those manufactured and produced by Raycap, one of the world’s leading electrical protection companies. Raycap’s business is to manufacture individual components and complete systems that provide protection from electrical surges and overvoltage on an industrial level, working to prevent damage to mission critical equipment worth millions of dollars. Needless to say, simple household surge suppressors are not the type of protection we are discussing.

Raycap manufactures several product lines designed to provide industrial level electricity protection from a variety of causes and sources. While their Strikesorb and Rayvoss lines are not the only protection devices that are utilized within industrial system installations, they are an extremely effective solution for protection devices put into place at the front line conductor entry point locations, protecting both the equipment and the panel boards feeding the equipment.  These devices are specifically designed to eliminate electrical power surges from coming into the facility.  Both the device and the correct installation point are crucial for leveraging maximum efficiency and protection against the wide variety of electrical spikes.  Raycap products have been designed and tested against different surge currents and have proven time and time again to be among the finest on the market.

The different causes of electrical transients require different levels or tiers of surge suppression devices in order to effectively prevent the surge from reaching equipment inside an industrial site.  For optimum protection the National Electrical Code recommends a tiered approach of surge protection, placing the high capacity surge suppression devices at service entrances followed by surge suppressors installed at branch panels and downstream. Residual voltage which is the amount of transient voltage that will remain on an AC line after a surge suppressor has functioned can still be extreme enough to cause significant damage downstream. A second and even third level of surge protection is needed in order to provide clean voltage to sensitive equipment.

When lightning strikes many times it is multi-stroke in nature, meaning that a single flash will contain four or even more strokes.  Lightning strikes to power lines that are directly connected to equipment will produce surges of massive levels which can not only destroy circuitry but additionally cause fires within industrial facilities and compound the levels of damage.  Even lighting strikes to buildings and structures can couple into power lines which are attached to equipment and must have protection systems designed specifically for coupled strikes in place. While a direct strike to equipment is almost assured to cause damage beyond the level of repair, a tiered diversion system consisting of first overhead shields and lightning rods, then high capacity line side and load side surge protection to all conductor entry points, critical panels, and downstream equipment is the best possible plan to protect an entire industrial facility.

Raycap systems for surge suppression will assist your facility in remaining as unaffected by power surges and overvoltage events as possible.  Contact us today to find out more.


Overvoltage Protection

Overvoltage Protection

Raycap is a leading designer and manufacturer of electrical overvoltage protection devices and systems for use within industrial sites. The protection systems developed by Raycap use industrial-grade components, such as the patented Strikesorb SPD technology, which enable unmatched levels of protection of critical, sensitive equipment within the industrial site. This vulnerable equipment, such as computers, microprocessors and other devices powered through the electrical grid would be damaged by lightning strikes and other overvoltage events which produce power surges coming from the electrical grid or from inside the industrial facility itself.  The protection technology inside of Raycap’s products prevents damage occurring from varying overvoltage and surge causes, and is designed to prevent any electrical surges from coming into contact with equipment.


Raycap Invests in MOV Technology with Acquisition of Varsi

MUNICH, Germany, October 16, 2015 — Raycap (www.raycap.com) has acquired metal oxide varistor (MOV) developer and manufacturer Varsi (www.varsi.si) in Ljubljana, Slovenia, in an effort to further invest in electrical components manufacturing which are key to the surge protection and power quality industry.


Raycap Expands Product Line and Offerings with Acquisition of Iskra Zascite

As part of a global growth strategy, Raycap takes on additional surge protection solutions and capabilities.

MUNICH, Germany, October 16, 2015 — In support of its plan for substantial growth, Raycap (www.raycap.com) has acquired surge protection manufacturer and innovator, Iskra Zascite (www.iskrazascite.si) in Ljubljana, Slovenia.


Electrical Protection

Electrical Protection

 

Raycap is one of the world’s leading manufacturers of electrical protection devices. Its electrical protection systems are designed to provide the finest protection available for industrial equipment and sites.  Electrical protection comes in numerous forms to divert the damage from specific electrical events, and the combination of these mechanisms into systems is the best way to provide complete protection from electrical surges.


Protection From Lightning On Industrial Sites

Protection From Lightning On Industrial Sites

 

The protection of industrial sites from lightning strikes and the surge damage that occurs as a result is important in order for companies to reduce the amount of losses absorbed over time.  There are two types of degradation losses as a result of surge instances that occur and effect sensitive equipment and data, causing gradual degradation due to surges at shutoff and startup, and instant damage and loss as a result of large power surges, generally as a result of lightning strikes.  The ongoing damage to equipment as a result of the switching surges is mitigated through the use of specific protection equipment, and the protection from lightning is achieved by using several methods and types of equipment designed specifically for the purpose.  Lightning losses are as a result of damage to computer components and programmable logic controls or microprocessors from the physical or the data loss standpoint.  Raycap is a leading manufacturer of systems designed to mitigate lightning losses of both kinds.


TVSS For Electrical Protection

TVSS For Electrical Protection

The term TVSS has been in use for years, being a shortened version of “transient voltage surge suppressor.” Raycap is one of the world’s leading manufacturers of TVSS devices, or Surge Protective Devices (SPDs), used throughout industrial sites to protect sensitive equipment from power surge damage and data loss.  Electrical surges on AC power lines can be caused by several different events, all with varying degrees of damage as a result.  In the case of lightning surges where spikes of over 50,000V routinely happen, Strikesorb TVSS equipment installed before and after the point of strike has the ability to minimize loss from the lightning surge.  TVSS equipment also mitigates the damage from minor spikes or surges or “electrical transients” caused by the switching on and off of equipment.  


What Is TVSS?

What Is TVSS?

TVSS is the industry term for a “transient voltage surge suppressor”. This term is still in use however it has been officially replaced by Underwriter’s Laboratories with the term “Surge Protective Device” or (SPD).  TVSS are devices that act as a cutoff in the case of a momentary spike or surge of electrical power on an AC line.  The installation of TVSS (SPDs) is crucial to the protection of sensitive equipment that can be damaged by electrical surges on AC lines; and of the data that might be destroyed if such spikes  happen.  TVSS devices (SPDs) are the most popular type of surge suppression equipment in use today.


Industrial Protection From Lightning

Industrial Protection From Lightning

Raycap is a world-leader in the manufacture of equipment and products that provide industrial protection from lightning. There are hundreds of thousands of industrial sites in the United States alone that are highly susceptible to a lightning strike at any time, all of which are at risk of costly losses due to the electric surges that result. These losses will generally come in the form of damage to high tech equipment or data loss due to that damage, as seen in the failures of fragile components inside computers, programmable logic controls (PLC) or microprocessors, all of which are heavily used in the automation processes of industrial sites. The protection that can be provided by the addition of Raycap products to both existing and new sites can potentially save millions of dollars in a single incident, and while direct strikes are rare, the potential for damage exists 24 hours per day.


Industrial Lightning Protection

Industrial Lightning Protection

A lightning strike is one of the most costly and damaging incidents that can happen to factory equipment, damaging high-tech electronic equipment like computers, microprocessors and programmable logic controls (PLCs) used to automate manufacturing systems at industrial sites. Although rare, lightning strikes cause large electrical surges that have the potential to cause catastrophic failures and process interruptions, bringing the necessity of industrial lightning protection into the planning of any industrial site. Industrial grade surge protective devices like Raycap’s Strikesorb and Rayvoss products are the only real solutions for serious protection of equipment from these overvoltage situations. If equipment goes unprotected, even a single unfortunate incident can cost millions in damage.


Strikesorb Surge Protective Devices – Technology

Strikesorb Surge Protective Devices – Technology

Introduction

There are several manufacturers of Surge Protective Devices (SPD) worldwide, sharing a global market that is expected to exceed US$2.4 billion by 2020, driven by the global need to protect sensitive electronic equipment from power fluctuations. The overwhelming majority of the SPD manufacturers use the same technologies – developed some 30 years ago – to protect today’s sophisticated electronic equipment. Their approach to surge suppression relies on using a multitude of bulk produced, commercial quality, low surge current rated metal oxide varistors (MOV) or silicon avalanche diodes (SAD) originally developed for electronic printed circuit board (PCB) applications.


Future-Proofing Your Remote Radio Head Networks

Future-Proofing Your Remote Radio Head Networks

For mobile operators to remain competitive they must find ways to quickly deploy remote radio head networks to meet their service offering expansion targets before their competitors do.
To make ready for the explosion of mobile traffic, mobile operators are making infrastructure changes to support an ever-increasing consumer appetite for media rich services. They are building new or retrofitting existing wireless networks that will accommodate expanded capacity to support future growth and enable the deployment of next generation networks. While operators are working to make these improvements, they must also manage capital expenditures and balance rising operational costs to ensure their competitiveness in a fast-changing, high-stakes industry.


The need for industrial surge protection

The need for industrial surge protection

Today’s industrial and professional equipment is dependent upon microprocessors and other sensitive electronic equipment, increasing the world’s need for greater protection from electrical surges. Embedded microprocessors, computers, programmable logic controls (PLCs) and other electronic circuitry that is used to automate industrial machine programming, tool changes, motor speed and other processes within sophisticated manufacturing systems is especially vulnerable. At industrial sites, power surges wreak havoc on equipment, causing catastrophic failures, interrupting processes and causing equipment to prematurely age, leading to failure. However by deploying industrial surge protection, manufacturers can mitigate potential problems and keep their equipment and the related processes up and running reliably without disruption or damage due to surge-related events.


Posidonia June 6-10, 2016

Posidonia 16 logoFind Raycap in Hall 3 of the 2016 Posidonia Event for the maritime industry, held June 6-10th in Athens Greece. Posidonia is the event where the owners and operators of the world’s largest shipping fleets gather to engage in technical and operations discussions, and attend the tradeshow for the suppliers of ships’ equipment and services.

 


Intersolar Europe June 22-24, 2016

IS_Logo_EU_38bis50mm_blau_rgb

Raycap will be at the Intersolar Europe, June 22-24th in Munich Germany. The Intersolar event focuses on photovoltaics, PV production technologies, energy storage systems and solar thermal technologies and is Europe’s premiere solar power business event.


Contact Thank You

Surge Protection

Protecting mission-critical equipment and facilities

Strikesorb-BasedDCSolutions-Group

Raycap DC surge protection products safeguard AC & DC-powered equipment and are an excellent solution for protection of solar power plants and cell towers.

Our DC power solutions are currently protecting the worlds largest cellular networks from electrical overvoltage damage caused by lightning strikes.

Raycap’s solar power protection products are used in DC systems of operating voltage up to 1500 V. They are installed on the DC side of the inverter, in combiner boxes, at PV panels and in surveillance systems at solar parks.

 

 

Thank you for requesting information on our products.  A Raycap representative will contact you back within 2 business days.


Contact Thank You

Surge Protection

Strikesorb protects mission-critical equipment & facilities

30-40-80 Group 1 small

Raycap’s Strikesorb surge protection (SPD) technology is the ideal solution for mission-critical facilities. It prevents electrical surges from causing damage to AC & DC-powered equipment. Strikesorb modules have a ten year warranty, are maintenance-free and can take multiple direct lightning hits while always protecting the equipment they are designed to protect.

Strikesorb’s extremely high surge current capability has been field-proven to withstand thousands of voltage transients without affecting performance or causing equipment failure. There are literally millions of Strikesorb modules installed in the field, and practically zero reported failures. Strikesorb ensures maintenance-free operation and is fully compliant with both the UL 1449 4th Edition and IEC 61643-11 safety standards.

 

 

Thank you for requesting information on our products.  A Raycap representative will contact you back within 2 business days.


Raycap auf der CCA Jahresversammlung

CCA LogoRaycap präsentiert im Rahmen der CCA Jahresversammlung und Fachmesse vom 07. bis 09. Oktober 2015 in Ft. Lauderdale FL, Ihre Überspannungsschutz- und Verbindunglösungen für RRH Architekturen an Mobilfunkstandorten.


Raycap Strikesorb 35 Models

The Strikesorb 35 modules feature enhanced performance characteristics and are specifically designed to protect the DC power circuits of photovoltaic systems rated up to 1500V DC.  The products deliver high performance surge protection and reliability while fully complying with the new EN50539-11 standard for SPDs installed on the DC side of photovoltaic power systems. Raycap Announces Strikesorb 35 Surge Protective Device


Raycap Awarded Ruban D’Honneur

Raycap received a 2011 Ruban d’Honneur UKTI award for Innovation from the HSBC European Business Awards, rewarding the development of its electrical protection products. See the Raycap video on the Wall Street Journal website.